二次根式教案6篇

時間:2023-10-26 作者:Fallinlove 備課教案

教案寫好能較好的提高老師們的上課質量,優秀的教案可以促進學生素質的提高和發展,以下是范文社小編精心為您推薦的二次根式教案6篇,供大家參考。

二次根式教案6篇

二次根式教案篇1

課題:二次根式

教學目標 1、知識與技能

理解a(a≥0)是一個非負數, (a≥0)

2、過程與方法

(1)數學思考:學會獨立思考、體會數學的體驗歸納、類比的思想

方法

(2) 問題解決:能夠利用性質進行二次根式的化簡計算,能夠互助

交流合作,分析問題,總結反思

3、情感、態度與價值觀

體驗成功的樂趣,鍛煉克服困難的意志,培養嚴謹

求實的科學態度

教學重難點 教學重點:二次根式的概念

教學難點:二次根式中根號下必須為非負數

教學過程

一、課前回顧

(2分鐘)

學生與老師共同回顧上節課所學內容,溫故而知新。 什么是二次根式?

二次根式中字母的取值范圍:

①被開方數大于等于零;

②分母中有字母時,要保證分母不為零。

③多個條件組合時,應用不等式組求解

一、情境引入(3分鐘)

由生活中的實例引入投影的概念,引起學生的學習興趣

已知下列各正方形的面積,求其邊長。

二、探究1(10分鐘)

練習1:

計算下列各式:

三、探究2(10分鐘)

可以發現它們有如下規律:

一般的,二次根式有下列性質:

練習2:

典型例題 例1:計算:

例2:計算:

達標測試(5分鐘)

課堂測試,檢驗學習結果

1、判斷題

2、若 ,則x的取值范圍為 ( a )

(a) x≤1 (b) x≥1

(c) 0≤x≤1 (d)一切有理數

3、計算

4、化??

5、已知a,b,c為△abc的三邊長,化簡:

這一類問題注意把二次根式的運算搭載在三角形三邊之間的關系這個知識點上,特別要應用好。

應用提高(5分鐘)

能力提升,學有余力的同學可以仔細研究 如圖,p是直角坐標系中一點。

(1)用二次根式表示點p到原點o的距離;

(2)如果 求點p到原點o的距離

體驗收獲 今天我們學習了哪些知識

二次根式的兩條性質。

布置作業 教材8頁習題第3、4題。

二次根式教案篇2

一、內容和內容解析

1.內容

二次根式的除法法則及其逆用,最簡二次根式的概念。

2.內容解析

二次根式除法法則及商的算術平方根的探究,最簡二次根式的提出,為二次根式的運算指明了方向,學習了除法法則后,就有比較豐富的運算法則和公式依據,將一個二次根式化成最簡二次根式,是加減運算的基礎.

基于以上分析,確定本節課的教學重點:二次根式的除法法則和商的算術平方根的性質,最簡二次根式.

二、目標和目標解析

1.教學目標

(1)利用歸納類比的方法得出二次根式的除法法則和商的算術平方根的性質;

(2)會進行簡單的二次根式的除法運算;

(3) 理解最簡二次根式的概念.

2.目標解析

(1)學生能通過運算,類比二次根式的乘法法則,發現并描述二次根式的除法法則;

(2)學生能理解除法法則逆用的意義,結合二次根式的概念、性質、乘除法法則,對簡單的二次根式進行運算.

(3)通過觀察二次根式的運算結果,理解最簡二次根式的特征,能將二次根式的運算結果化為最簡二次根式.

三、教學問題診斷分析

本節內容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學生可能會出現困難或容易失誤,在除法運算中,可以先計算后利用商的算術平方根的性質來進行,也可以先利用分式的性質,去掉分母中的根號,再結合乘法法則和積的算術平方根的性質來進行.二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算.教學中不能只是列舉題型,應以各級各類習題為載體,引導學生把握運算過程,估計運算結果,明確運算方向.

本節課的教學難點為:二次根式的除法法則與商的算術平方根的性質之間的關系和應用.

四、教學過程設計

1.復習提問,探究規律

問題1二次根式的乘法法則是什么內容?化簡二次根式的一般步驟怎樣?

師生活動學生回答。

?設計意圖】讓學生回憶探究乘法法則的過程,類比該過程,學生可以探究除法法則.

五、目標檢測設計

二次根式教案篇3

目 標

1. 熟練地運用二次根式的性質化簡二次根式;

2. 會運用二次根式解決簡單的實際問題;

3. 進一步體驗二次根式及其運算的實際意義和應用價值。

教學設想

本節課的重點是:二次根式及其運算的實際應用;難點是:例7涉及多方面的知識和綜合運用,思路比較復雜。

教 學 程序 與 策 略

一、預習檢測:

1.解決節前問題:

如圖,架在消防車上的云梯ab長為15m,ad:bd=1 :0.6,云梯底部離地面的距離bc為2m。你能求出云梯的頂端離地面的距離ae嗎?

歸納:

在日常生活和生產實際中,我們在解決一 些問題,尤其是涉及直角三角形邊長計算的問題時經常用到二次根式及其運算。

二、合作交流:

1、:如圖,扶梯ab的坡比(be與ae的長度之比)為1:0.8,滑梯cd的坡比為1:1.6,ae= 米,bc= cd。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經過了多少路程(結果要求先化簡,再取近似值,精確到0.01米)

讓學生有充分的時間閱讀問題,并結合圖形分析問題:(1)所求的路程實際上是哪些線段的和?哪些線段的長是已知的?哪些線段的長是未知的?它們之間有什么關系?(2)列出的算式中有哪些運算?能化簡嗎?

注意解題格式

教 學 程 序 與 策 略

三、鞏固練習:

完成課本p17、1,組長檢查反饋;

四、拓展提高:

1:如圖是一張等腰三角形彩色紙,ac=bc=40cm,將斜邊上的高cd四等分,然后裁出3張寬度相等的長方形紙條。(1)分別求出3張長方形紙條的長度。(2)若用這些紙條為一幅正方形美術作品鑲邊(紙條不重疊),如右圖,正方形美術作品的面積最大不能超過多少cm。

師生共同分析解題思路,請學生寫出解題過程。

五、課堂小結:

1.談一談:本節課你有什么收獲?

2.運用二次根式解決簡單的實際問題時應注意的的問題

六、堂堂清

1: 作業本(2)

2:課本p17頁:第4、5題選做。

二次根式教案篇4

【 學習目標 】

1、知識與技能:了解二次根式的概念,能求根號內字母范圍,理解二次根式的雙重非負性,并能應用它解決相關問題。

2、過程與方法:進一步體會分類討論的數學思想。

3、情感、態度與價值觀:通過小組合作學習,體驗在合作探索中學習數學的樂趣。

【 學習重難點 】

1、重點:準確理解二次根式的概念,并能進行簡單的計算。

2、難點:準確理解二次根式的雙重非負性。

【 學習內容 】課本第2— 3頁

【 學習流程 】

一、 課前準備(預習學案見附件1)

學生在家中認真閱讀理解課本中相關內容的知識,并根據自己的理解完成預習學案。

二、 課堂教學

(一)合作學習階段。

教師出示課堂教學目標及引導材料,各學習小組結合本節課學習目標,根據課堂引導材料中得內容,以小組合作的形式,組內交流、總結,并記錄合作學習中碰到的問題。組內各成員根據課堂引導材料的要求在小組合作的前提下認真完成課堂引導材料。教師在巡視中觀察各小組合作學習的情況,并進行及時的引導、點撥,對普遍存在的問題做好記錄。

(二)集體講授階段。(15分鐘左右)

1. 各小組推選代表依次對課堂引導材料中的問題進行解答,不足的本組成員可以補充。

2. 教師對合作學習中存在的普遍的不能解決的問題進行集體講解。

3. 各小組提出本組學習中存在的困惑,并請其他小組幫助解答,解答不了的由教師進行解答。

(三)當堂檢測階段

為了及時了解本節課學生的學習效果,及對本節課進行及時的鞏固,對學生進行當堂檢測,測試完試卷上交。

(注:合作學習階段與集體講授階段可以根據授課內容進行適當調整次序或交叉進行)

三、 課后作業(課后作業見附件2)

教師發放根據本節課所學內容制定的針對性作業,以幫助學生進一步鞏固提高課堂所學。

四、板書設計

課題:二次根式(1)

二次根式概念 例題 例題

二次根式性質

反思:

二次根式教案篇5

一、教學目標

1。使學生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。

2。使學生掌握化簡一個二次根式成最簡二次根式的方法。

3。使學生了解把二次根式化簡成最簡二次根式在實際問題中的應用。

二、教學重點和難點

1。重點:能夠把所給的二次根式,化成最簡二次根式。

2。難點:正確運用化一個二次根式成為最簡二次根式的方法。

三、教學方法

通過實際運算的例子,引出最簡二次根式的概念,再通過解題實踐,總結歸納化簡二次根式的方法。

四、教學手段

利用投影儀。

五、教學過程

(一)引入新課

提出問題:如果一個正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的近似值?

了。這樣會給解決實際問題帶來方便。

(二)新課

由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創

這兩個二次根式化簡前后有什么不同,這里要引導學生從兩個方面考慮,一方面是被開方數的因數化簡后是否是整數了,另一方面被開方數中還有沒有開得盡方的因數。

總結滿足什么樣的條件是最簡二次根式。即:滿足下列兩個條件的二次根式,叫做最簡二次根式:

1。被開方數的因數是整數,因式是整式。

2。被開方數中不含能開得盡方的因數或因式。

例1 指出下列根式中的最簡二次根式,并說明為什么。

分析:

說明:這里可以向學生說明,前面兩小節化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運算結果也都是最簡二次根式。

例2 把下列各式化成最簡二次根式:

說明:引導學生觀察例2題中二次根式的特點,即被開方數是整式或整數,再啟發學生總結這類題化簡的方法,先將被開方數或被開方式分解因數或分解因式,然后把開得盡方的因數或因式開出來,從而將式子化簡。

例3 把下列各式化簡成最簡二次根式:

說明:

1。引導學生觀察例題3中二次根式的特點,即被開方數是分數或分式,再啟發學生總結這類題化簡的方法,先利用商的算術平方根的性質把它寫成分式的形式,然后利用分母有理化化簡。

2。要提問學生

問題,通過這個小題使學生明確如何使用化簡中的條件。

通過例2、例3總結把一個二次根式化成最簡二次根式的兩種情況,并引導學生小結應該注意的問題。

注意:

①化簡時,一般需要把被開方數分解因數或分解因式。

②當一個式子的分母中含有二次根式時,一般應該把它化簡成分母中不含二次根式的式子,也就是把它的分母進行有理化。

(三)小結

1。滿足什么條件的根式是最簡二次根式。

2。把一個二次根式化成最簡二次根式的主要方法。

(四)練習

1。指出下列各式中的最簡二次根式:

2。把下列各式化成最簡二次根式:

六、作業

教材p。187習題11。4;a組1;b組1。

七、板書設計

二次根式教案篇6

活動1、提出問題

一個運動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運動場的負責人要準備多少面積的草皮嗎?

問題:10+20是什么運算?

活動2、探究活動

下列3個小題怎樣計算?

問題:1)-還能繼續往下合并嗎?

2)看來二次根式有的能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?

二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數相同的進行合并。

活動3

練習1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數)

創設問題情景,引起學生思考。

學生回答:這個運動場要準備(10+20)平方米的草皮。

教師提問:學生思考并回答教師出示課題并說明今天我們就共同來研究該如何進行二次根式的加減法運算。

我們可以利用已學知識或已有經驗來分組討論、交流,看看+到底等于什么?小組展示討論結果。

教師引導驗證:

①設=,類比合并同類項或面積法;

②學生思考,得出先化簡,再合并的解題思路

③先化簡,再合并

學生觀察并歸納:二次根式化為最簡二次根式后,被開方數相同的能合并。

教師巡視、指導,學生完成、交流,師生評價。

提醒學生注意先化簡成最簡二次根式后再判斷。

91精品国自产拍在线观看不卡|国产第一区二区三区精品|国产精品视频二区
<蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>